Pricing Barrier and Bermudan Style Options Under Time-Changed Lévy Processes: Fast Hilbert Transform Approach

نویسندگان

  • Pingping Zeng
  • Yue Kuen Kwok
چکیده

We construct efficient and accurate numerical algorithms for pricing discretely monitored barrier and Bermudan style options under time-changed Lévy processes by applying the fast Hilbert transform method to the log-asset return dimension and quadrature rule to the dimension of log-activity rate of stochastic time change. Some popular stochastic volatility models, like the Heston model, can be nested in the class of time-changed Lévy processes. The computational advantages of the fast Hilbert transform approach over the usual fast Fourier transform method, like exponential decay of errors in terms of the step size in the transform and avoidance of recovering option prices at the monitoring time instants, can be extended to pricing barrier and Bermudan style options under time-changed Lévy processes. We manage to compute the fair value of a dividend-ruin model with both embedded reflecting (dividend) barrier and absorbing (ruined) barrier. We also consider pricing of Bermudan options in conjunction with the determination of the associated critical asset prices. Our numerical tests demonstrate high level of accuracy, efficiency and reliability of the fast Hilbert transform approach when compared to other numerical schemes in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing Bermudan Options in Lévy Models

This paper presents a Hilbert transform method for pricing Bermudan options in Lévy models. The corresponding optimal stopping problem is reduced to a backward induction in the Fourier space that involves taking Hilbert transforms of certain analytic functions or integrating such functions. The Hilbert transforms and integrals can be discretized using very simple schemes. The resulting discrete...

متن کامل

Fast Hilbert transform algorithms for pricing discrete timer options under stochastic volatility models

Timer options are barrier style options in the volatility space. A typical timer option is similar to its European vanilla counterpart, except with uncertain expiration date. The finite-maturity timer option expires either when the accumulated realized variance of the underlying asset has reached a pre-specified level or on the mandated expiration date, whichever comes earlier. The challenge in...

متن کامل

Option Pricing with Regime Switching Lévy Processes Using Fourier Space Time Stepping

Although jump-diffusion and Lévy models have been widely used in industry, the resulting pricing partial-integro differential equations poses various difficulties for valuation. Diverse finite-difference schemes for solving the problem have been introduced in the literature. Invariably, the integral and diffusive terms are treated asymmetrically, large jumps are truncated and the methods are di...

متن کامل

A Fast and Accurate Fft-based Method for Pricing Early-exercise Options under Lévy Processes

A fast and accurate method for pricing early exercise and certain exotic options in computational finance is presented. The method is based on a quadrature technique and relies heavily on Fourier transformations. The main idea is to reformulate the well-known risk-neutral valuation formula by recognising that it is a convolution. The resulting convolution is dealt with numerically by using the ...

متن کامل

A Fourier-Based Valuation Method for Bermudan and Barrier Options under Heston's Model

We develop an efficient Fourier-based numerical method for pricing Bermudan and discretely monitored barrier options under the Heston stochastic volatility model. The two-dimensional pricing problem is dealt with by a combination of a Fourier cosine series expansion, as in [9, 10], and high-order quadrature rules in the other dimension. Error analysis and experiments confirm a fast error conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014